

Page 1 of 11 pages

Keyes Data Logging Shield (Rev 1)

General Description

Keyes’ Data Logging Shield is an inexpensive yet sophisticated designed shield for most available

Arduino boards. It is an SD card module and RTC (real-time clock) module combined into one forming a

shield for data logging.

SD Card module is used as a storage to store data such as images, documents and logs. You can

save data files on any FAT16 or FAT32 formatted SD card.

The RTC included allows your microcontroller project to keep track of time even if it is

reprogrammed, or if the power is lost. Perfect for data logging, clock-building, time stamping, timers and

alarms, etc. The DS1307 is the most popular RTC, and works best with 5V-based chips such as the

Arduino.

Also included in this shield is a 3V lithium cell battery for the RTC.

Page 2 of 11 pages

Specifications

 SD card interface works with FAT16 or FAT32 formatted cards. 3.3v level shifter circuitry

prevents damage to your SD card

 Real time clock (RTC) keeps the time going even when the Arduino is unplugged. The battery

backup can lasts for a very long time.

 Prototyping area for soldering connectors, circuitry or sensors.

 Configurable indicator LEDs (L1 and L2)

 Onboard 3.3v regulator is both a reliable reference voltage and also reliably runs SD cards that

require a lot of power to run.

Schematic

Page 3 of 11 pages

Shield Overview

1. An SD card holder can fit any SD/MMC storage up to 8GB and as small as 32MB. If you have a

MicroSD card, there are low cost adapters which will let you fit these in. SD cards are tougher to

lose than MicroSD. Simply Push or Pull the card into this slot.

2. Reset

3. 3V Lithium Cell Battery

4. DS1307 – low-power, full binary-coded decimal (BCD) series real-time clock.

5. 74HC125D - quad buffer/line driver

6. Extra Breakout:

3V - this is the 3V out of the regulator with up to 50mA available current.

Page 4 of 11 pages

SQ - this is the optional Square wave output from the RTC which can be enabled through coding.

WP - this is the Write Protect pad on the SD card, you can use this to detect if the write-protect

tab is on the card by checking this pin

CD - this is the card detect pad on the SD card. When this is connected to ground, an SD card is

inserted. We suggest using the internal pullup on an Arduino pin if you want to use this pad

7. Configurable LED Indicator and Chip Select

CS - this is the Chip Select pin for the SD card. If you need to cut the connection to pin 10

because it is conflicting, this pad can be soldered to any digital pin.

L2 and L1 - these are optional user-LEDs with a 470 ohm resistors already in series. Connect to

any digital pin, pull high to turn on the corresponding LED.

How to use RTC to get current date and time

 You need:

 Arduino Uno

 Keyes Data Logging Shield

1. Mount the Keyes Data logging shield into your Arduino.

2. Download RTClib and extract it to library folder in your Arduino directory.

3. Enter this code into your Arduino IDE then click upload.

// Date and time functions using a DS1307 RTC connected via I2C and

Wire lib

#include <Wire.h>

#include "RTClib.h"

RTC_DS1307 RTC;

void setup () {

 Serial.begin(57600);

 Wire.begin();

 RTC.begin();

 if (! RTC.isrunning()) {

 Serial.println("RTC is NOT running!");

 // following line sets the RTC to the date & time this sketch

was compiled

 // uncomment it & upload to set the time, date and start run the

RTC!

 //RTC.adjust(DateTime(__DATE__, __TIME__));

 }

}

http://www.tinkbox.ph/sites/tinkbox.ph/files/downloads/RTClib.zip

Page 5 of 11 pages

void loop () {

 DateTime now = RTC.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(' ');

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

 Serial.println();

 delay(2000);

}

NOTE: When it is your first time using the shield, the RTC might not be set to function yet.

To do this uncomment //RTC.adjust(DateTime(__DATE__, __TIME__));. This will

set the current time and date of the RTC into your PC time and date.

4. Click the Serial Button to see the results. Make sure the baud rate is set to 57600 baud.

How to use SD Card Reader

 You need:

 Arduino Uno

 Keyes Data Logging Shield

 SD Card/ MicroSD with adapter

1. Mount the Keyes Data logging shield into your Arduino.

2. Insert your SD card into the SD card slot.

3. Format the SD card using FAT16/FAT32 files system

(We recommend using SD Formatter to prevent issues)

https://www.sdcard.org/downloads/formatter_4/

Page 6 of 11 pages

4. Download SD library and extract it to library folder in your Arduino directory.

5. Open Cardinfo sketch.

6. Change this line const int chipSelect = 4; to const int chipSelect = 10;

7. Click the Serial Button to see the results. Make sure the baud rate is set to 57600 baud.

You will be able to see this Serial Monitor if you have a working SD Card and is compatible to the

shield.

If you get this results:

http://www.tinkbox.ph/sites/tinkbox.ph/files/downloads/SD.zip

Page 7 of 11 pages

This means you either have a damaged SD Card or you missed a step in this How-to.

Sample Data Logging Program

 Now let’s try the shield as one. I wanted to know when there is a movement at the front of

my door so I’ve decided to log the time and date whenever a motion detected.

 It is very simple but this concept can act as a trigger to a bigger application! So, let’s start!

You need:

Arduino

Data Logging Shield

Mini PIR Motion Sensor

Sketch

#include <SD.h>

#include <SPI.h>

#include <Wire.h>

#include "RTClib.h"

// the last 10 reads if power is lost but it uses less power and is mu

ch faster!

#define SYNC_INTERVAL 1000 // mills between calls to flush() - to

write data to the card

uint32_t syncTime = 0; // time of last sync()

Page 8 of 11 pages

#define ECHO_TO_SERIAL 1 // echo data to serial port

#define WAIT_TO_START 0 // Wait for serial input in setup()

// the digital pins that connect to the LEDs

RTC_DS1307 RTC; // define the Real Time Clock object\

int ledPin = 13; // choose the pin for the LED

int inputPin = 2; // choose the input pin (for PIR sensor)

int pirState = LOW; // we start, assuming no motion detected

int val = 0; // variable for reading the pin status

// for the data logging shield, we use digital pin 10 for the SD cs li

ne

const int chipSelect = 10;

// the logging file

File logfile;

void error(char *str)

{

 Serial.print("error: ");

 Serial.println(str);

 // red LED indicates error

 while(1);

}

void setup(void)

{

 Serial.begin(9600);

 Serial.println();

 // use debugging LEDs

#if WAIT_TO_START

 Serial.println("Type any character to start");

 while (!Serial.available());

#endif //WAIT_TO_START

 // initialize the SD card

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 error("Card failed, or not present");

 }

 Serial.println("card initialized.");

 // create a new file

 char filename[] = "LOGGER00.CSV";

 for (uint8_t i = 0; i < 100; i++) {

Page 9 of 11 pages

 filename[6] = i/10 + '0';

 filename[7] = i%10 + '0';

 if (! SD.exists(filename)) {

 // only open a new file if it doesn't exist

 logfile = SD.open(filename, FILE_WRITE);

 break; // leave the loop!

 }

 }

 if (! logfile) {

 error("couldnt create file");

 }

 Serial.print("Logging to: ");

 Serial.println(filename);

 // connect to RTC

 Wire.begin();

 if (!RTC.begin()) {

 logfile.println("RTC failed");

#if ECHO_TO_SERIAL

 Serial.println("RTC failed");

#endif //ECHO_TO_SERIAL

 }

 logfile.println("millis,stamp,datetime,status");

#if ECHO_TO_SERIAL

 Serial.println("millis,stamp,datetime,status");

#endif //ECHO_TO_SERIAL

}

void loop(void)

{

 val = digitalRead(inputPin); // read input value

 if (val == HIGH) { // check if the input is HIGH

 digitalWrite(ledPin, HIGH); // turn LED ON

 if (pirState == LOW) {

// we have just turned on

 logData();

 Serial.print(", ");

 Serial.println("Motion detected!");

 logfile.print(", ");

 logfile.println("Motion Detected!!");

 logfile.flush();

// We only want to print on the output change, not state

 pirState = HIGH;

 }

 }

 else {

 digitalWrite(ledPin, LOW); // turn LED OFF

 if (pirState == HIGH){

 logData();

 // we have just turned of

 Serial.print(", ");

Page 10 of 11 pages

 Serial.println("Motion ended!");

 logfile.print(", ");

 logfile.println("Motion Ended!!");

 logfile.flush();

 // We only want to print on the output change, not state

 pirState = LOW;

 }

 }

}

void logData(){

 DateTime now;

 // log milliseconds since starting

 uint32_t m = millis();

 logfile.print(m); // milliseconds since start

 logfile.print(", ");

#if ECHO_TO_SERIAL

 Serial.print(m); // milliseconds since start

 Serial.print(", ");

#endif

 now = RTC.now();

 // log time

 logfile.print(now.unixtime()); // seconds since 1/1/1970

 logfile.print(", ");

 logfile.print('"');

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print(" ");

 logfile.print(now.hour(), DEC);

 logfile.print(":");

 logfile.print(now.minute(), DEC);

 logfile.print(":");

 logfile.print(now.second(), DEC);

 logfile.print('"');

#if ECHO_TO_SERIAL

 Serial.print(now.unixtime()); // seconds since 1/1/1970

 Serial.print(", ");

 Serial.print('"');

 Serial.print(now.year(), DEC);

 Serial.print("/");

 Serial.print(now.month(), DEC);

 Serial.print("/");

 Serial.print(now.day(), DEC);

 Serial.print(" ");

 Serial.print(now.hour(), DEC);

 Serial.print(":");

 Serial.print(now.minute(), DEC);

 Serial.print(":");

 Serial.print(now.second(), DEC);

 Serial.print('"');

#endif //ECHO_TO_SERIAL

}

Page 11 of 11 pages

Actual Setup

Results

