CHAPTER 6

PCF8591 ADC

One of the peripherals missing in the Raspberry Pi is an analog-to-digital converter
(ADC). One low-cost solution is an 8-bit ADC peripheral based upon the PCF8591 chip.
You can purchase the bare chip on eBay for about $1.50, but for about 10 cents more, you
can get the assembled YL-40 PCB.

This chapter will explore the PCF8591 ADC and the Linux I2C device driver for it.
While the driver source code exists in the kernel source tree, it is not likely compiled into
your Raspbian release. Even when installed, there are a few simple things you need to do
to get the driver operating. Using the Linux driver support, it will be a snap to take ADC
readings using a shell script or a Python program.

The YL-40 PCB

This chapter explores the YL-40 PCB, which is about 1 inch by 1.5 inches in size. You
might use a different PCB, using the same PCF8591 chip. The YL-40 comes preassembled
with header strips and extras that make it easy to use. In addition to the PCF8591 chip’s
ability to convert an analog signal into a digital value, it has one digital-to-analog
converter (DAC) output channel, which you’ll explore later. Figure 6-1 illustrates the
topside of the YL-40 PCB.

© Warren Gay 2017 67
W. Gay, Custom Raspberry Pi Interfaces, DOI 10.1007/978-1-4842-2406-9_6

CHAPTER 6 I PCF8591 ADC

Figure 6-1. The YL-40 PCF8591 PCB

Header strip P2 (left) consists of these analog inputs and outputs:

AOUT (DAC), output
e AINO (ADC), input 0
e AIN1 (ADC), input 1
e AIN2(ADC), input 2
e AIN3 (ADC), input 3

The power is applied on the right through P3 connector pins V. and GND (shown
on the right of Figure 6-1). Additionally, the 12C signals for SDA and SCL are found at P3.
One of the advantages of the PCF8591 chip is that it will operate from 3.3 volts, interfacing
nicely with the Raspberry Pi. Figure 6-2 is a schematic of the YL-40 PCB.

68

P3

] scL
'soa
=" GND
Yce

B 0 N =

P4 AIN1

P5

AINO

P6

AIN3

CHAPTER 6 I PCF8591 ADC

YCC

|
* + @ @
Ic1
x §x ——
- §§v°— g2 M osc vypp 6 &
| 100nF 18 SDA
- - ! +— 10 so1
1 . .
2 + g A0
T T ! 7] M 14
% + A2 YREF |
12
\~ g + EXT
GND ==X 8= I aour 18 ’
| 5| AINO Iis
f . 5| AINT AGND =
| AIN2 g 2
s 4 AN3 YsS + I5x ©Ex
! PCF8591P
4 DAC PWR L
; 5 QE e _H_g
o
¢35 o35
| YL-40 '
GND
P2
& | AoUT i
e AIN3 2-
AIN2 3
| AINT q-
* + & AINO 5=
us Note: Some pcbs label
GND AINO..AIN3 backwards!

Figure 6-2. Schematic of the YL-40 PCB

Three jumpers come installed on the YL-40 that enable or disable extra features.

Jumper P4, when installed, enables a temperature-sensitive
resistance sensor (R). On my PCB, this didn’t seem to work (on
two PCBs that I purchased). Later in this chapter, I'll show you
how to fix that.

Jumper P5 enables the light-dependent resistor (LDR) and
connects it to AINO. This jumper can be removed when you want
to provide your own analog input to AINO.

Jumper P6 connects the wiper arm of potentiometer R, to

AIN3. Using a small screwdriver, you can turn R, clockwise or
counterclockwise to cause an analog reading to change. This is
extremely useful during initial testing. You can, of course, remove
the jumper on P, and use AIN3 for any other purpose. Turning

R, fully clockwise grounds AIN3, while counterclockwise brings
AIN3 to V. potential.

AIN2 has no jumper and is available at header strip P2. No other component on the
PCB is attached to it.

69

CHAPTER 6 " PCF8591 ADC

Voltage Range

Because the PCF8591 (YL-40 PCB) is powered from the Raspberry Pi’s 3.3V supply, the
analog input voltages must be kept between 0 volts and 3.3 volts. The V___ is taken from
the power supply on the YL-40 PCB. If you're wiring this up yourself, you have the option
of using a lower V,_voltage, but the maximum voltage should not exceed V, (on the
YL-40 PCB, this is also known as V). The datasheet lists any input voltage V, as V, +0.5V
(3.3 + 0.5 volts) as the absolute maximum. The lowest voltage for any input is listed as

-0.5 volts.

You can find further technical details by Googling PCF8591 datasheet PDF.

12C Bus

The PCF8591 uses the I2C bus to communicate. As an I2C slave peripheral, the YL-40
PCB provides two weak pull-up resistors, R, and R,, which are 10k each. The Raspberry
Pi will already have its own pull-up resistors on these lines (1.8K each). If you are rolling
your own circuit, you may want to install these 10k<2 pullup resistors also, though they are
not strictly necessary.

12C Addresses

The PCF8591 chip possesses three address pins, A0 to A2, allowing you to choose one of
eight possible peripheral addresses from 0x48 to 0x4F. The YL-40 PCB, however, connects
all three of these pins to ground, restricting the address to 0x48 (jumpers would have
been nice). Unmodified, only one YL-40 PCB can be attached to a given 12C bus. Later in
the chapter, you'll see how the PCB can be modified to overcome this limitation.

DAC (AOUT)

With the Linux device driver operating, you can write a value from 0 to 255 to have the
DAC output (AOUT) establish an output voltage. The driver input value, however, must
be multiplied by ten. Assuming that you have exactly 3.3 volts powering the PCF8591 (and
thus V, . = 3.3 volts), a value of 255 should establish a voltage very near that. A value of
zero establishes a ground value instead. A midpoint value of 128 should generate a value
near half of 3.3 volts (1.65). When multiplied by 10 for the driver, the values used are 2550,
0, and 1280, respectively.

The YL-40 PCB, however, has a yellow LED D, through a R =1 kQ resistor is
connected in series to AOUT (shown up close in Figure 6-3). With the DAC set to produce
maximum output, the yellow D1 should light up. But this turns out to be less brilliant than
the red power LED D, beside it. When I measured the voltage, AOUT was only 2.89 volts,
which is well short of the expected 3.3 volts. After I removed the LED (D), the voltage
came up to a respectable 3.29 volts and begs the question: just how much current can the
DAC drive?

70

CHAPTER 6 I PCF8591 ADC

Figure 6-3. DAC LED D, between D, and C,

A careful look at the NXP datasheet under the heading “14.2 D/A characteristics”
lists these parameters:

Symbol Parameter Conditions Min Typical Max Unit
V. Analog output voltage Noresistiveload V_ Vi, A%
R, =10kQ \' 09xV, ~V

The upper line where the conditions state “no resistive load” confirms that the
maximum output reading should be V (a supply voltage of 3.3 volts). What is
interesting is that when a 10 kQ load is attached, the voltage drops to 0.9 x V_ , or 2.97
volts (0.9 x 3.3 volts).

If you treat the DAC output like a battery, you can determine what the source
resistance R, is. A practical battery can be modeled as an ideal battery with a source
resistor in series with it. Knowing the source resistance allows you to predict its output
voltage for any given current flow (or load resistance). Figure 6-4 illustrates the idea in
schematic form.

71

CHAPTER 6 " PCF8591 ADC

RS
A\ AouT
S éé&'
— > A
T |

i

Figure 6-4. Equivalent circuit for DAC output AOUT

In Figure 6-4, the ideal battery (V) represents the 3.3 volts provided to the PCF8591
chip. The unknown source resistance (R,) is connected to AOUT feeding the load (R).
You know the following from the datasheet:

When R, =10kQ, the voltage V(R) is 0.9 x V, which in this
case is 2.97 volts.

Armed with this information, you can apply Ohm’s law to determine the resistance of
R,. Because of this information:

e V_ =V(R)+V({R)

total —

e V([R)=V,__ -V(R)

otal

e V(R =3.3volts - 2.97 volts, which is 0.33 volts
you also know the following:
e V(R)=2.97volts

V(R,) _297volts

I(R)=
* (R) R 10 kQ

=0.297mA

L

This now allows you to calculate R.. Because I(R,) = I(R) in the series circuit,
you get this:

V(Rs) 0.33 volts 1

= =1.1 kQ
I(Ry) 0.287 mA

[] RS:

From this you can conclude that the series resistance is about 1.1 kQ2. Let’s now apply
this information.

72

CHAPTER 6 I PCF8591 ADC

If you consider the LED (D,) and its resistor together as R (the load), using Ohm'’s law
you can now compute the current flow through the LED (and thus coming out of AOUT).

e V(R)=V,, -V(R), =3.3volts - 2.89 volts = 0.41 volts

V(Ry) _ 0.41 volts

© H(R)=I(R)= R 1.1 kQ
) .

=0.372 mA

With an LED current flow of 0.372mA, it is no wonder that the LED is weakly lit! LEDs
often require 3mA or more for proper illumination.

All of this highlights the fact that the DAC output at AOUT is not suitable for driving
loads requiring current. It does provide a controllable output voltage, however, but it is not
capable of any substantial current drive. Use a voltage-to-current driver, when required. This
further supports my suggestion for removing or disabling the output LED on the YL-40 PCB.

Removing YL-40 LED D1

Because the YL-40 PCB connects a resistor (R,=1kQ) and yellow LED to the AOUT circuit,
the output accuracy of the DAC is compromised. For this reason, remove D if you care
about output accuracy. Figure 6-3 illustrates the location of D1 on the YL-40 PCB between
the power LED (D2) and capacitor C1. Carefully apply a soldering iron to both ends of D1
to remove it. Make certain that no solder blobs remain to short things out.

Figure 6-5 illustrates the PCB area with D, removed. On mine, there was a little white
triangle underneath showing the direction for LED current flow. The bottom pad (D,
cathode) connects to ground, while the upper pad (D, anode) connects to R,, which is
then connected to AOUT. Measuring resistance from the upper pad (anode) to ground
should show a near-infinite resistance after LED removal. Measuring from the same
upper pad to AOUT should read about 1 kQ (the value of R). If you read something else,
check for a solder short.

Figure 6-5. LED D, removed

73

CHAPTER 6 " PCF8591 ADC

Hacking YL-40 12C Address

If you want to use more than one YL-40 module, you'll need to hack the I12C address for
each of the additional modules. Figure 6-6 illustrates the lifting of pin 6 to solder a small
wire to it. The other end of the wire is soldered to V| (pin 16) where the +3.3V supply

is connected. In this way, address bit A1 becomes a 1 bit instead of a 0 bit. This change
results in the I12C address of 0x4A. The wire I used was solid 30-gauge wire-wrap wire.

Figure 6-6. Changing I2C address by lifting pin 6

These pins are small and difficult to work with. With patience and a small prying tool
like an eyeglass screwdriver, you may be able to pry up a leg without using a soldering iron.
Don’t overdo it or the leg may break off. Once separated from the PCB pad, use a small,
tipped soldering iron to apply just enough solder to attach the wire to the pried-up leg.

The PCF8591 address pins are as follows:

Pin No. Label Description

5 A0 Least significant address bit
6 Al Middle address bit

7 A2 Most significant address bit

The YL-40 PCB has all three pins soldered to ground, resulting in an 12C address of
0x48. By lifting address pins and connecting them to +3.3 volts, additional addresses are

possible. Table 6-1 summarizes the extra I2C addresses.

74

CHAPTER 6 I PCF8591 ADC

Table 6-1. Addresses: Lifted Pins Are 1 Bits, While Soldered Pins Are 0 Bits
A2 A1 A0 I12C Address

0 0 1 0x49
0 1 0 0x4A
0 1 1 0x4B
1 0 0 0x4C
1 0 1 0x4D
1 1 0 0x4E

1 1 1 0x4F

It is important that the lifted pins be connected to +3.3 volts. Otherwise, static
electricity will collect on the pins causing the address to change sporadically.

12C Bus Setup

If you haven't already done so, install i2c-tools, as shown here:
$ sudo apt-get install i2c-tools
Once installed, then list your I12C buses, as shown here:
$ i2cdetect -1
If nothing is displayed, then you need to change the configuration so that the 12C
drivers getloaded at boot time. The new kernels use the /boot/config.txt file to enable
I2C support. Edit the file so that the 12c_arm=on line is uncommented, as shown here:
Uncomment some or all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
#dtparam=i2s=on
#dtparam=spi=on
Save your changes and reboot.
sudo /sbin/shutdown -r now

After the reboot, try listing the I2C buses again, as shown here:

$ i2cdetect -1
i2c-1 i2c 3f804000.12c I2C adapter

From this session output, you now see i2c-1 is available as expected.

75

CHAPTER 6 I PCF8591 ADC

Reading from PCF8591

If you are using the YL-40 PCB, you can read the built-in potentiometer using the
in3_input (to change the potentiometer, turn the white control with a small screwdriver).
If you built your own PCF8591 circuit, then attach a potentiometer (R,), as shown in the
schematic (Figure 6-2). Turning R, full-clockwise should cause a reading of AIN3 of near
0. Turning R, full counterclockwise should cause it to read 255.

In subdirectory pcf8591 are a few programs, including readadc (run make if that
has not already been done). Invoke the program with option -h to display some usage
information, as shown here:

$./readadc -h

./readadc [-a address] [-i input] [-h]

where:
-a address Specify I2C address
-i input Specify AINx (AIN3 is default)
-d Enable and leave DAC enabled
-h Help

By default, the readadc program assumes I12C address 0x48. To specify a different
address, use the -a option and the new address. If the address is prefixed with Ox, the

address will be interpreted as hexadecimal. For example, the following will use the I12C
address of 4A in hex:

$./readadc -a Ox4A

The -1 option for readadc defaults to 3 for accessing the chip input channel AIN3.
Specifying a different number allows you to read other channels. For example, the
following reads from AIN1 with the I12C address of 4A in hex:

$./readadc -a Ox4A -i1

Finally, the -d option just enables the DAC output (I'll discuss this more later).

Experiment

Using the YL-40 PCB, adjust the potentiometer fully clockwise. After doing so, let’s take an
ADC reading, as shown here:

$./readadc
0

Now turn that potentiometer fully counterclockwise and repeat, as shown here:

$./readadc
255

76

CHAPTER 6 I PCF8591 ADC

Don’t worry if the value doesn’t read exactly 255. In some cases, you might read
254. This is a good sign that the ADC is working. Now turn the potentiometer to exactly
midway between the two extremes.

$./readadc
137

If you did better than I did, you might get 127 or 128. With an 8-bit ADC, your range
of values are from 0 to 255.

Writing to the DAC

In the same pcf8591 subdirectory is a program named writedac. It accepts nearly the
same command-line options, while the trailing arguments are expected to be values to be
written to the DAC.

$./writedac -h
./writedac [-a address] [-h] values to write...
where:

-a address Specify I2C address

-h Help

To write the value 128 to the DAC, use the following command:
$./writedac 128
or the following:
$./writedac 0x80

If multiple values are listed, they are all written to the DAC in sequence before the
command exits.

Experiment

You need a voltmeter or DMM for this experiment. Attach the negative lead of the DMM
to the ground of the Pi (or PCF8591 module). Set the meter on volts and attach the red
lead to the DAC output. This is labeled AOUT on the YL-40 PCB.

With the meter leads attached, you should read about half of 3.3 volts after
performing this command:

$./writedac 128

This assumes that you have removed the yellow LED, as shown earlier. If you left the
LED in, you may see a lower voltage, but it should be well above 0. Now let’s set the DAC to 0:

$./writedac 0

77

CHAPTER 6 I PCF8591 ADC

Immediately, your meter should read near 0 volts. Finally, set the DAC to its
maximum value.

$./writedac 255

Your meter should now report nearly 3.3 volts (mine read 3.25 volts).
Try the DAC at 25 percent and 75 percent of its maximum value and verify the voltages.

Experiment

If you lack a means of measuring your DAC voltage, you can use the ADC input to
measure the DAC. You want to use the AIN2 channel since it is not connected to any extra
components. So, attach a Dupont wire from AIN2 to the AOUT terminal.

There are two things tricky about this experiment:

¢ You must specify the -12 option on the readadc command to read
AIN2.

e You must specify the -d option to keep the DAC enabled.

The following session first establishes the output voltage of the DAC at 255 and then
reads AIN2 twice:

$./writedac 255

$./readadc -i2 -d
255

$./readadc -i2 -d
254

From this you have confirmed the DAC output setting. Successive reads can
sometimes wander somewhat, so expect that. The -d option of the readadc command
is required to keep the DAC enabled because by default the command turns it off. If you
can’t repeat the readings of this experiment, this is the first thing to check.

Now change the DAC to 128 and read it back.

$./writedac 128
$./readadc -i2 -d

177
$./readadc -i2 -d
127
$./readadc -i2 -d
127

On my unit, the change in DAC output seemed to take a little extra time. Notice that
the first read returned 177 and then afterward 127.

78

CHAPTER 6 I PCF8591 ADC

Limitations
The PCF8591 chip has some limitations.

e Its maximum sampling rate is f =11.1kHz, making it unsuitable for
most audio.

e ADC returns the prior result and the current value (further
reducing the effective sample rate).

e The ADC value is 8-bit resolution.
Despite the limitations, the PCF8591 has some advantages.
e 3.3V-compatible with the Raspberry Pi
e I2Cenabled
e Economically priced

e Built-in Linux driver support

Extending Voltage Range

You've already seen the device do direct voltage measurements. But how do you measure
voltages greater than 3.3 volts? Use a voltage divider, as shown in Figure 6-7.

Input

R1

AINXx__ O

Gnd O
o
oc

AGND

Figure 6-7. Using a voltage divider

79

CHAPTER 6 " PCF8591 ADC

The object of the voltage divider is to put the input voltage into a reduced range for
the ADC input. Since the ADC is powered from the Raspberry Pi 3.3V supply, the ADC
input range is limited to a maximum of 3.3 volts. To extend the range to, say, 16 volts for
automotive measurement, you can compute the values of R, and R, in Figure 6-7.

The simplified design procedure is as follows:

1. Arriving at a current flow through R, of about 1mA, producing
3.3 volts requires that R, be about 3300L:

3.3 volts _ 3300 O

0.0001 Amps

2. 16 volts minus 3.3 volts means you want a minimum voltage
drop across R, of about 12.7 volts.

12.7 volts
3. Tocompute R, use this: Ry =—————=12.7 kQ

0.001 Amps
4. The next 10 percent tolerance resistor value greater than or
equal to 12.7kQ is 15kQ.

With R, = 3.1kQ and R =15kQ, let’s check the actual input voltage range achieved.

To get a full reading of 3.3 volts across R,, you require 1mA of current. R, will have
the same current flow as R, since it is in series. So if 1mA is flowing through R,, you know
that it would have a voltage drop of I x R=1mA x 15000 Q = 15 volts. Therefore, the total
voltage that the divider pair can handle is as follows:

3.3 volts + 15 volts = 18.3 volts

What is the resolution of this range using the 8-bit ADC? An 8-bit resolution means
you have a total of 256 steps (28 = 256). Consequently, the resolution is as follows:

18.3volts 0.071volts 0.071volts

256steps - 256steps step

The conclusion is that the 8-bit ADC can measure 0 to 18.3 volts in 0.071V increments.

Repairing the Temp Sensor

With the jumper installed in P4, you can read the current temperature sensed by
thermistor R, which changes in resistance with temperature. The thermistor is in series
with the R =1kQ resistor, and thus it divides the 3.3V supply. The AIN1 input measures the
midpoint voltage of the divide, between the top of R, and ground.

But there is a problem—the YL-40 module’s PCB didn’t ground the lower leg of R, Tt
is in fact unconnected. This results in reading the highest value, 255, because the AIN1
input is effectively attached only to the +3.3V supply. With a bit of Googling, you'll find
that others have also experienced this problem.

80

CHAPTER 6 I PCF8591 ADC

Fortunately, the solution is not difficult to correct if you have a soldering iron.
Figure 6-8 shows how to locate the supposed-to-be-grounded end of R . Use your DMM
to check to see whether that leg and ground shows 0Q. If it does not, a fix is needed
(ifyour ADC reading is 255, this is already a strong indication that the repair is needed).

Figure 6-8. Location of ground end of thermistor R,

Figure 6-9 illustrates the underneath side of R,. Since there are no inner PCB layers,
this connection is quite visibly unconnected.

81

CHAPTER 6 " PCF8591 ADC

Figure 6-9. Bottom view of R, ungrounded leg

Based on Figure 6-9, you could run a small wire from R, to the ground post just above
and to the right. I believed that to be too risky for short circuits and chose to solder a wire
to a ground point shown in the bottom left of Figure 6-10 instead.

Figure 6-10. R6 grounded to point, bottom left

82

CHAPTER 6 I PCF8591 ADC

Check with the DMM to see that the R, leg is indeed grounded after soldering. After
the repair, you should get a reading from AIN1 near 231 when at room temperature. The
reading should definitely be less than the value 255 that was obtained before the repair.

Conversion to Celsius

Reading the temperature of R, requires some calculation after taking a reading from AINI.
You'll be using the simplified calculation [1] because you don’t know all of the parameters
for the thermistor part. The calculation requires these four steps:

1. Read AINI to get an ADC reading of the voltage at R, (you'll
assume 234 for this example).

2. Compute the resistance of R, based upon the ADC reading.
3. Compute the temperature in degrees K.

4. Convert degrees K to degrees Celsius.

a_n

To calculate the current resistance of R,, the ADC reading “a” is plugged into the
following formula:

R xa

R. =
256 —-a

6

The 256 in the previous formula comes from the fact that the ADC has a resolution
of 8 bits (256 steps). Assuming that the reading from the ADC is 234, you plug in the
following for variable “a”:

o _1000x234

e = =10,636.36
256-234

Now that you know the resistance of R, you can compute the temperature in degrees
Kelvin.

In that formula, the values are as follows:
e Tisthe computed temperature in degrees Kelvin.
e T, isthe room temperature in degrees Kelvin (25°C is 298.15°K).
e Bisthe coefficient of the thermistor (adafruit.com claimed 3950).

e R istheresistance at room temperature (adafruit.comclaimed
10kQ).

83

CHAPTER 6 I PCF8591 ADC

Plugging everything in, you get the following:

l: ! + L xln 10636'36):0.003369
T 298.15 3950 10000

;: 96.8°K

0.003369

To convert to degrees Celsius, you use this:

296.8-273.15=23.65°C

Compare your reading with another thermometer in the room. You may want to add
or subtract a small calibration offset for your project.

Reading Temperature

To read the temperature-sensitive device (R,) attached to input channel AIN1, you can
apply the program readtemp in the pcf8591 subdirectory to read it. This program is
almost the same as readadc, except that it defaults to -i11 and performs the somewhat
nasty Celsius calculation for you.

$./readtemp -h
./readtemp [-a address] [-h]

where:
-a address Specify I2C address
-i input Specify AINx (AIN1 is default)
-h Help

The default options for readtemp are -a0x48 -il.

Experiment

To read the temperature, simply invoke the following command:

$./readtemp
ADC=228, R6 = 8142.9 ohms, T=302.846 deg K, 29.696 deg C

The health monitor in my room reported 28°C, confirming that this is close. The
value ADC=228 shows what the ADC peripheral read. R =8142.9 is the computed
resistance of R.. The value T=302.846 is the computed temperature in degrees Kelvin.
Finally, the calculated Celsius temperature is reported.

84

CHAPTER 6 I PCF8591 ADC

The YL-40 LDR

The YL-40 PCB includes a light-dependent resistor (LDR), which is R, on the schematic
(shown earlier in Figure 6-2). The nature of the LDR is that it has high resistance in the
dark and low resistance in light. The change in resistance is relatively slow, making it
unsuitable for audio reception, yet it is fast enough for control applications. The YL-40
connects this device to AINO when the jumper P5 is installed.

The LDR can be made of various materials and consequently has varying responses
to light and wavelengths. Without knowing the exact part and parameters for the one
included on the YL-40, you can make only general assumptions about the device used.
The tolerances for the part also vary as much as 30 percent [2].

The resistance of the LDR (R.) can be calculated in the same way that you did for the
thermistor R..

_ R,xa
256—-a

7

Experiment

In low ambient light conditions, try reading the LDR (R.) on your YL-40 PCB from input
channel AINO. Here I have turned my desk lamp off in the evening:

$./readadc -io
238

The reading of 238 is fairly high. Turning the desk lamp on, the reading drops, as
shown here:

$./readadc -io
160

Now if I shine a small LED flashlight directly on the LDR, I get an even lower reading.

$./readadc -io
50

How low does it get in direct sunlight?

1N914 Experiment

The 1N914 is a small glass-encased signal diode, shown up close in Figure 6-11. The
cathode (negative) end of the diode is marked with a black band around it. The other

end (anode) is positive for forward conduction, according to the conventional flow of
electricity. This experiment will measure the voltage-to-current relationship of this diode,
using forward current flow.

85

CHAPTER 6 " PCF8591 ADC

Figure 6-11. 1N914 diode to be tested

You'll take advantage of the fact that you can establish a small current source from
the DAC output AOUT. If the diode being tested were to act as a short circuit, you would
want to limit the current to about 1mA for this experiment. You know that full voltage will
be near 3.3 volts, so using Ohm'’s law, you can calculate the series resistance needed.

v___33 =3300 Q

T0.001 A 0.001

The breadboard circuit is wired according to Figure 6-12, with R =3.3k€ in series
with the 1IN914 diode D,. The voltage will be applied out of the DAC to the series resistor
R, while you take voltage readings at the top of diode D, into AINO. The DAC will
perform a slow sweep from 0 volts to the maximum. By measuring the voltage at the
junction of R, and D , you'll be able to calculate the current in D, using Ohm’s law.

86

CHAPTER 6 I PCF8591 ADC

AOUT (DAC)
O
AIN1 (ADC)
o
—=®
=1 < AINO (ADC)
O
<t
>
= —
- o
GND

Figure 6-12. 1N914 diode circuit

You also measure the voltage provided by the DAC itself using ADC input AIN1. This
is done because the drive capability of the DAC is limited in current, causing its output
voltage to droop. When the DAC output sags in voltage, you can use the AIN1 reading to
more accurately assess the current actually flowing.

The program diode. cpp sets a test DAC voltage and then reads AINO and AIN1 to
plot the readings. This experiment will use gnuplot-x11 to plot the results, so if you don’t
have it installed yet, do the following:

sudo apt-get install gnuplot-x11

If you ssh’ed into your Pi, make sure you enable X11 Window tunneling with
the -X option.

$ ssh -X pi@pi

Further, if you expect gnuplot to open on your remote machine (like your Mac OS X
laptop), you need to set up permissions or simply do the following on the display server:

$ xhost +

If you're using a keyboard and monitor attached to the Pi itself, you can ignore this.

87

CHAPTER 6 I PCF8591 ADC

Running the diode program requires no command-line options, unless you need to
specify the 12C address.

$./diode -h

./diode [-a address] [-h]

where:
-a address Specify I2C address
-h Help

Once your breadboard circuit is ready, run the diode program.

$./diode

DAC 0, AINO 1, AIN1 1, VD1=0.0, VR=0.0, I=0.0000
DAC 1, AINO 1, AIN1 1, VD1=0.0, VR=0.0, I=0.0000
DAC 2, AINO 2, AIN1 2, VD1=0.0, VR=0.0, I=0.0000
DAC 3, AINO 3, AIN1 3, VD1=0.0, VR=0.0, I=0.0000
DAC 4, AINO 4, AIN1 4, VD1=0.1, VR=0.0, I=0.0000
DAC 5, AINO 5, AIN1 5, VD1=0.1, VR=0.0, I=0.0000
DAC 6, AINO 6, AIN1 6, VD1=0.1, VR=0.0, I=0.0000
DAC 7, AINO 6, AIN1 7, VD1=0.1, VR=0.0, I=0.0000
DAC 8, AINO 7, AIN1 7, VD1=0.1, VR=0.0, I=0.0000
DAC 9, AINO 8, AIN1 8, VD1=0.1, VR=0.0, I=0.0000

J
DAC 10, AINO 9, AIN1 9, VD1=0.1, VR=0.0, I=0.0000
DAC 11, AINO 10, AIN1 10, VD1=0.1, VR=0.0, I=0.0000

The program reports several lines to the terminal, which can be helpful in
debugging your experiment. The DAC, AINO, and AIN1 values are reported on each line.
Additionally, the calculated V, V,, and I are displayed. V and I are written to the file
diode.dat. The diode program also writes out the file gnuplot.cmd that you can use to

plot the results.
gnuplot -p gnuplot.cmd

If all went well with gnuplot, you should have a plot displaying the results, as shown
in Figure 6-13. If you chose not to remove the LED (D1) from the DAC circuit, you might

notreach as high a current as shown, but you should get similar results. If gnuplot is not
cooperating, check that your environment variable DISPLAY is set and exported.

88

CHAPTER 6 I PCF8591 ADC

@ & %! Gnuplot
Diode 1N314 Plot
0,0008 T T T T T T
“diode.dat” using 1:2
0,0007 o
0,0008 f J_- .

Current through D1
2
g
o~
-
i

0,0002 N -
0,0001 r r
] " M i ==y — M i
0 0.1 0,2 0.3 0.4 0.5 0.6 0.7

Voltage across Il
x= =0,073358 y= -6,73008e-05

Figure 6-13. gnuplot of diode test

The plotted results show you that your diode reached a maximum of about
0.0007A in current (0.7mA) when the voltage reached or exceeded 0.6 volts. The curve
demonstrates that the diode’s response is exponential in nature, becoming almost linear
after the 0.6V level was reached. This is the general characteristic for silicon diodes.
What happens if you try an LED instead? Does color make a difference? Also, try a
germanium diode (1N34A).

Software

In this chapter you used the I12C bus driver in Linux to communicate to the PCF8591
device using the provided C++ programs. These are found in the pcf8591 subdirectory
and can be cloned and modified for your own purposes. The basics of 12C programming
will be discussed in Chapter 11.

89

CHAPTER 6 I PCF8591 ADC

Potential Experiments

The following are potential experiment ideas that you can perform using the PCF8591
with any Raspberry Pi:

1.

Measure the voltage of a 1.5V dry cell (of your choice) wired
to a flashlight bulb. Measure the voltage over time, measuring
the lifetime of the cell. Repeat with different brands, noting
the cost of each cell. Construct a chart of the most economical
batteries based upon brand, cost, and lifetime.

Repeat experiment 1 for rechargeable cells. How do they
compare?

Using the YL-40 LDR, record the moonlight level for a week or
more and use gnuplot to plot it.

Place your Pi in the refrigerator and track the light-on time to
measure door open times.

Use the DAC to produce a low-frequency sine wave. Produce a
triangle, saw, and square waves.

Summary

This chapter showed the versatility of the economical PCF8591 ADC/DAC chip. You
also saw the variety of experiments that the YL-40 PCB offers after certain adjustments
are made. Despite the limitations of 8-bit resolution, the response of a signal diode was
measured and plotted. At the low price of a PCF8591, how can you argue with the geek
fun that it provides?

Bibliography

[1]

[2]

90

“Thermistor” Using a Thermistor. Adafruit.com, n.d. Web.
30Jan. 2016. <https://learn.adafruit.com/thermistor/
using-a-thermistors>.

“Measuring Nocturnal Light” Measuring Nocturnal Light.
N.p., n.d. Web. 30 Jan. 2016. <http://home.earthlink.
net/~nevadabat/Moonlight/MoonLight.html>.

